Webster R, Harris M, Shenk R, Blumenstock J, Gerber J, Billman C, Benson A, Haluck R. Using an approximation to the euclidean skeleton for efficient collision detection and tissue deformations in surgical simulators. Stud Health Technol Inform. 2005; 111:596-8

PMID: 15718804


This paper describes a technique for efficient collision detection and deformation of abdominal organs in surgical simulation using an approximation of the Euclidean skeleton. Many researchers have developed surgical simulators, but one of the most difficult underlying problems is that of organ-instrument collision detection followed by the deformation of the tissue caused by the instrument. Much of the difficulty is due to the vast number of polygons in high resolution complex organ models. A high resolution gall bladder model for instance can number in the tens of thousands of polygons. Our methodology utilizes the reduction power of the skeleton to reduce computations. First, we recursively compute approximations to the Euclidean skeleton to generate a set of skeletal points for the organ. Then we pre-compute for each vertex in each polygon the associated skeleton point (minimal distance discs). A spring is then connected from each vertex to its associated skeleton point to be used in the deformation algorithm. The data structure for the organ thus stores for each skeletal point its maximum and minimum distances and the list of associated vertices. A heuristic algorithm using the skeleton structure of the instrument and the skeleton of the organ is used to determine instrument collisions with the organ.